Journal of Organometallic Chemistry, 87 (1975) C23—C26 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

MECANISME DE LA FORMATION D'ALLENES IODES A PARTIR D'ACETATES PROPARGYLIQUES $R^1R^2(HC=C)C-OC(CH_3)=O$ PAR REACTION DE $MgI_2 + CH_3MgI$

FRANÇOISE COULOMB et JACQUES GORE

Département de Chimie Organique, Université Claude Bernard, 43, Boulevard du 11 novembre 1918, 69621 Villeurbanne (France)

(Reçu le 16 décembre 1974)

Summary

The title reaction proceeds via a $R^1 R^2 (HC = C)C - O(CH_3) = O \cdots MgI_2$ complex; the C-O bond-breaking and simultaneous I^- expulsion (which may be aided by XMg^+) to form the propargyl $R^1 R^2 (HC = C)C^+$ cation depends in part on the stability of the cation formed.

Des travaux récents du laboratoire ont montré que: (1) La réaction de l'iodure de méthylmagnésium sur les acétates d'alcools propargyliques tertiaires I produit des allènes iodés si elle est menée en présence d'iodure de magnésium [1] (Schéma 1).

OAC
$$R^{1} \longrightarrow CH_{3}MgI$$

$$R^{2} \longrightarrow I$$

$$(I) \longrightarrow CH_{3}MgI_{2}$$

$$ether-35^{\circ} \longrightarrow R^{1}$$

$$R^{2} \longrightarrow I$$

$$(II) 50 à 60 \%$$

$$R^{1} \text{ et } R^{2} = \text{ glkyles}$$

La présence du magnésien s'est avérée indispensable pour obtenir II avec de bons rendements. La réaction de I avec MgI₂ seul conduit comme le montrent l'IR et la RMN à un complexe I-I qui n'évolue que très lentement et redonne principalement I au moment de l'hydrolyse [1c].

(2) Le traitement des tosylates d'alcools saturés par MgI₂ dans l'éther conduit, en quelques minutes et à température ambiante, aux dérivés iodés correspondants avec d'excellents rendements [2].

ROTs
$$\frac{MgI_2}{\text{\'ether}}$$
 RI

L'étude poussée de cette réaction [2, 3] a permis de proposer le mécanisme du Schéma 2.

La réaction est généralement S_N2 . Elle ne possède les caractéristiques d'une réaction S_N1 que si le carbocation R^+ est stabilisé. Ce second résultat laissait supposer que la transformation $I \to II$ suivait un processus identique dont MgI_2 était le responsable. Il restait à élucider le mécanisme de la réaction en précisant notamment le rôle exact du magnésien; c'est ce qui a été fait à l'aide de deux types d'expériences complémentaires:

Le magnésien n'est indispensable pour réaliser cette transformation que si R¹ et R² sont des radicaux alkyles. En effet, dans le cas de Ia et Ib, la seule réaction de MgI₂ dans l'éther suffit à provoquer la substitution du groupe acétate par un iode (Schéma 3).

SCHEMA 3

Dans le cas de Ia, l'aldéhyde et l'alcool iodés proviennent de l'addition d'iode sur l'iodoallène IIa [4]; cette réaction a probablement lieu au moment de l'hydrolyse de MgI₂ qui libère de l'iode moléculaire comme le montre la coloration rouge apparaissant à ce stade.

On peut remarquer que la coupure hétérolytique de la liaison C-O de ces

deux acétates conduit à un carbocation stabilisé. L'existence d'un tel intermédiaire dans le cas de Ib semble ne pas faire de doute, compte tenu de l'obtention majoritaire de III selon une distribution cis/trans en accord avec les résultats observés par Julia et coll. [5] lors de l'ouverture de carbocations α -cyclopropylés; les deux isomères de III ont été identifiés à l'aide de leurs spectres de RMN par comparaison avec ceux de leurs homologues bromés décrits dans la littérature [6].

Le rôle de CH₃MgI lors de la transformation I → II peut être, au moins en partie, joué par l'hydrure de sodium. Si l'on ajoute au reflux de l'éther 1.2 mol de ce réactif à un mélange de 1 mol d'acétate Ic et 4 mol de MgI₂, on voit augmenter assez nettement les pourcentages d'iodoallène IIc, de son isomère acétylénique IVc et du diène Vc né de l'isomérisation de IIc dans le milieu réactionnel.

$$(Ic) = (IC) + (IC) +$$

SCHEMA 4. Les conditions sont celles utilisées généralement pour réaliser la transformation $I \to II$ en présence de CH_3 MgI [1].

Ces deux types d'expérience permettent de proposer un mécanisme pour le passage I → II provoqué par CH₃MgI + MgI₂.

Comme on l'a rappelé ci-dessus, un acétate I se complexe aisément avec MgI₂ mais à l'inverse de ce qui est observé dans le cas d'un tosylate, la nucléophilie de l'ester n'est pas assez forte pour provoquer la libération de I⁻ sauf: si le carbocation propargylique est assez stable; sa formation par dissociation spontanée de la liaison C-O assiste alors l'attaque de MgI₂ par le carbonyle du groupe acétate (voie A) et si l'attaque du magnésien (ou HNa) au niveau du carbone sp² de la fonction acétate augmente notablement la densité électronique sur l'oxygène du carbonyle (voie B). La dissociation de la liaison C-O pour conduire au carbocation pourrait être alors éventuellement aidée par XMg⁺ (ou Na⁺). En effet, il a été montré que la réaction n'est pas stéréospécifique [1c], ce qui exclut une attaque de I⁻ concertée avec la rupture de la liaison C-O lors de la seconde phase de ce mécanisme.

Bibliographie

- (a) J. Goré et M.L. Roumestant, Tetrahedron Lett., (1971) 1027.
 (b) M.L. Roumestant et J. Goré, Bull. Soc. Chim. Fr., (1972) 591.
 - (b) M.L. Roumestant et J. Goré, Bull. Soc. Chim. Fr., (1972) 591.(c) M.L. Roumestant et J. Goré, Bull. Soc. Chim. Fr., (1972) 598.
- 2 J. Goré, P. Place et M.L. Roumestant, Chem. Commun., (1973) 821.
- 3 P. Place, These de 3eme cycle, Lyon, 1975.
- 4 F. Coulomb, J. Goré et M.L. Roumestant, Bull. Soc. Chim. Fr., (1973) 3352.
- 5 M. Julia, C. Descoins et C. Risse, Tetrahedron, 1966, supp. 8, part. II, 443 et ref, citées.
- 6 M. Julia, S. Julia, B. Stalla-Bourdillon et C. Descoins, Bull. Soc. Chim. Fr., (1964) 2533.